
Year 12 - AS Level Terms
Component 01: Computing Principles
Structure and Function of Processor HT1
Types of Processor HT1
Input, Output and storage HT1
Operating Systems HT2
Applications Generation HT6
Introduction to Programing HT6
Databases HT5
Networks HT2
Web Technologies HT2
Data Types HT3
Data Structures HT3
Boolean Algebra HT4
Computing Related Legislation HT5
Ethic, moral and cultural issues HT5

Component 02: Algorithms and Problem Solving
Thinking Abstractly HT1
Thinking Ahead HT1
Thinking Procedurally (revisit with Programming Tech). HT1
Thinking Logically HT1
Algorithms (revisit with programming Tech). HT2
Programming Techniques HT3/ HT4
Software Development HT5/ HT6

Start on Component 03 HT6 - 6 lessons
Problem identification
Stakeholders

Please note that we have Subject Clarification Documents which further break down the specification content. Reference should be made to these, where a centre seeks further guidance as to the level of depth to which content should be
taught. We would recommend that topics are taught to encourage a breadth of understanding for students, rather than explicitly limit teaching to meet the minimum requirements of the specification.
A Level Content Clarification Document
AS Level Content Clarification Document

Year 13 - A Level Terms
Component 1: Computer Systems
Structure and Function of Processor HT3
Types of Processor HT3
Input, Output and storage HT4
Systems Software HT2 - Re-Visit
Software Development HT2 - Re-Visit
Types of Programming Language HT2 - Re-Visit
Compression, Encryption and Hashing HT4
Databases HT1
Networks HT4
Web Technologies HT2 - Re-Visit
Data Types HT1 - A2 Content
Data Structures HT3
Boolean Algebra HT1 - A2 Content
Computing Related Legislation HT1
Ethic, moral and cultural issues HT1

Component 02: Algorithms and Problem Solving
Thinking Abstractly HT1 - Re-visit
Thinking Ahead HT1 - Re-visit
Thinking Procedurally with Programming Tech. HT2 - Re-Visit
Thinking Logically HT1 - Re-visit
Thinking Concurrently HT1
Programming Techniques HT2
Algorithms HT2 & HT3
Computation Methods HT4 & HT5

further break down the specification content. Reference should be made to these, where a centre seeks further guidance as to the level of depth to which content should be
taught. We would recommend that topics are taught to encourage a breadth of understanding for students, rather than explicitly limit teaching to meet the minimum requirements of the specification.

Terms
Component 03: Programming Project
Analysis of the problem (10 marks) HT1

Problem identification Year 12 - HT6
Stakeholders Year 12 - HT6
Research the problem
Specify the proposed solution

Design of the solution (15 marks) HT1/ HT2
Decompose the problem
Describe the solution
Describe the approach to testing

Developing the solution (25 marks)
 Iterative development process HT2
Testing to inform development HT3/ HT4

Evaluation (20 marks) HT4
Testing to inform evaluation
Success of the solution
Describe the final product
Maintenance and development

Programming Project to be finalised before 20th April.

further break down the specification content. Reference should be made to these, where a centre seeks further guidance as to the level of depth to which content should be
taught. We would recommend that topics are taught to encourage a breadth of understanding for students, rather than explicitly limit teaching to meet the minimum requirements of the specification.

Year 13 - A Level

Teaching weeks: 35
Teaching hours/week: 5
Total teaching time: 175
Scheme teaching time: 121

Teaching Hours Topic

Scheme of work teaching hours

Please read guidance notes on right when planning
your scheme of work

Input, Output and storage8

Systems Software (A Level)

Operating Systems (AS 9

6 Structure and Function of
Processor

Types of Processor9

7 Compression, Encryption
and Hashing

Operating Systems (AS
Level)

8 Applications Generation

8 Software Development

6 Databases

20 Types of Programming
Language

5 Moreal and Ethical Issues

5 Computing related legislation

Web Technologies

8 Data Types

10 Boolean Algebra

7

5 Networks

Guidance to teachers

Sub Topic
The Arithmetic and Logic Unit; ALU, Control Unit and Registers (Program Counter; PC,
Accumulator; ACC, Memory Address Register; MAR, Memory Data Register; MDR, Current
Instruction Register; CIR). Buses: data, address and control
The Fetch-Decode-Execute Cycle; including its effects on registers.

The factors affecting the performance of the CPU: clock speed, number of cores, cache.
The use of pipelining in a processor to improve efficiency
Von Neumann, Harvard and contemporary
processor architecture.
The differences between and uses of CISC and RISC processors.
GPUs and their uses (including those not related to graphics).
Multicore and Parallel systems.
How different input, output and storage devices can be applied to the solution of different
problems.
The uses of magnetic, flash and optical storage devices.
RAM and ROM.
Virtual storage.
The need for, function and purpose of operating systems.
Memory Management (paging, segmentation and virtual memory).
Interrupts, the role of interrupts and Interrupt Service Routines (ISR), role within the Fetch-
Decode-Execute Cycle.
Scheduling: round robin, first come first served, multi-level feedback queues, shortest job first
and shortest remaining time.

Allocated teaching time is assuming that you are teaching the full A Level, and thus need to
include the Component 03 Programming Project.

If solely teaching AS Level, you can adjust teaching time accordingly, as you will not need to
factor in the time for the Programming Project, but will need to deliver the Component 02 content.

AS Level is viewed as a one year course and fits well with A Level if co-teaching. Stretching AS
over two years may make co-teaching significantly more difficult to coordinate.

Centres may wish to deliver AS in Year 12 and A Level in Year 13. Candidates likely to move on
to Year 13 should be studying programming throughout the first year to consolidate their skills.
Solely delivering practical programming skills in Year 13 may hinder their progress within the
Component 03 Programming Project unit.

Distributed, embedded, multi-tasking, multi-user and Real Time operating systems.
BIOS.
Device drivers.
Virtual machines, any instance where software is used to take on the function of a machine,
including executing intermediate code or running an operating system within another.
The nature of applications, justifying suitable applications for a specific purpose.
Utilities.
Open source vs. closed source.
Translators: Interpreters, compilers and assemblers.
Stages of compilation (lexical analysis, syntax analysis, code generation and optimisation).
Linkers and loaders and use of libraries.
Understand the waterfall lifecycle, agile methodologies, extreme programming, the spiral model
and rapid application development.

The relative merits and drawbacks of different methodologies and when they might be used.
Writing and following algorithms.
Different test strategies, including black and white box testing and alpha and beta testing
Test programs that solve problems using suitable test data and end user feedback, justify a test
strategy for a given situation.
Need for and characteristics of a variety of programming paradigms.
Procedural languages:
• program flow
• variables and constants
• procedures and functions
• arithmetic, Boolean and assignment
operators
• string handling
• file handling.
Assembly language (including following and writing simple programs with the Little Man Computer
instruction set).
Modes of addressing memory (immediate, direct, indirect and indexed).
Object-oriented languages with an understanding of classes, objects, methods, attributes,
inheritance, encapsulation and polymorphism.
Lossy vs. Lossless compression.
Run length encoding and dictionary coding for lossless compression.
Symmetric and asymmetric encryption.
Different uses of hashing.
Relational database, flat file, primary key, foreign key, secondary key, entity relationship
modelling, normalisation and indexing.
Methods of capturing, selecting, managing and exchanging data.
Normalisation to 3NF.
SQL – Interpret and modify.
Referential integrity.
Transaction processing, ACID (Atomicity, Consistency, Isolation, Durability), record locking and
redundancy.
Characteristics of networks and the importance of protocols and standards.

The internet structure:
• The TCP/IP Stack.
• DNS
• Protocol layering.
• LANs and WANs.
• Packet and circuit switching.
Network security and threats, use of firewalls, proxies and encryption.
Network hardware.
Client-server and peer to peer.
HTML, CSS and JavaScript.
Search engine indexing.
PageRank algorithm.
Server and client side processing.
Primitive data types, integer, real/floating point, character, string and Boolean.
Represent positive integers in binary.
Use of sign and magnitude and two’s complement to represent negative numbers in binary.
Addition and subtraction of binary integers.
Represent positive integers in hexadecimal.
Convert positive integers between binary hexadecimal and denary.
Representation and normalisation of floating point numbers in binary.
Floating point arithmetic, positive and negative numbers, addition and subtraction.
Bitwise manipulation and masks: shifts, combining with AND, OR, and XOR.
Positive and negative real numbers using normalised floating point representation
How character sets (ASCII and UNICODE) are used to represent text.
Define problems using boolean logic.
Manipulate Boolean expressions, including the use of Karnaugh maps to simplify Boolean
expressions
Use the following rules to derive or simplify statements in Boolean algebra: De Morgan’s Laws,
distribution, association, commutation, double negation.
Using logic gate diagrams and truth tables.
The logic associated with D type flip flops, half and full adders.
The Data Protection Act 1998.
The Computer Misuse Act 1990.
The Copyright Design and Patents Act 1988.
The Regulation of Investigatory Powers Act 2000.
The individual moral, social, ethical and cultural
opportunities and risks of digital technology:
• Computers in the workforce.
• Automated decision making.
• Artificial intelligence.
• Environmental effects.
• Censorship and the Internet.
• Monitor behaviour.
• Analyse personal information.
• Piracy and offensive communications.
• Layout, colour paradigms and character sets.

C
om

m
on

 C
on

te
nt

AS
 o

nl
y

C
on

te
nt

A
Le

ve
l C

on
te

nt

C
o-

te
ac

ha
bl

e
pe

rc
en

ta
ge

100%

100%

80%

66%

25%

83%

60%

33%

40%

100%

100%

25%

64%

60%

60%

Resource Links

Online Delivery Guide: Structure and function of the processor
Topic Exploration Pack - Teacher Instructions: Structure and function of the
Processor
Learner Activity: Structure and Function of the Processor

Online Delivery Guide: Types of Processor
Topic Exploration Pack - Teacher Instructions: Types of Processor
Topic Exploration Pack - Learner Activity: Types of Processor
Online Delivery Guide: Input, output, storage

Online Delivery Guide: Systems Software
Topic Exploration Pack - Teacher Instructions: Systems Software
Topic Exploration Pack - Learner Activity: Systems Software

Topic Exploration Pack - Teacher Instructions: Application Generation
Topic Exploration Pack - Learner Activity: Application Generation

Online Delivery Guide: Software Development

Topic Exploration Pack - Teacher Instructions: Software Development
Topic Exploration Pack - Learner Activity: Software Development

Online Delivery Guide: Types of Programming Language
Topic Exploration Pack - Learner Activity: Types of Programming Language

Online Delivery Guide: Compression, Encryption and Hashing
Topic Exploration Pack - Teacher Instructions: Compression, Encryption and Hashing

For AS LEVEL Lossy v Lossless Compression is part of 1.3.3 Web Technologies

Online Delivery Guide: Software Development
Topic Exploration Pack - Teacher Instructions: Software Development
Topic Exploration Pack - Learner Activity: Software Development

Online Delivery Guide: Networks

Topic Exploration Pack - Teacher Instructions: Networks

Online Delivery Guide: Web Technologies
Topic Exploration Pack - Teacher Instructions: Web Technologies
Topic Exploration Pack - Learner Activity: Web Technologies

Online Delivery Guide: Data Types
Topic Exploration Pack - Teacher Instructions: Data Types
Topic Exploration Pack - Learner Activity 1: Data Types
Topic Exploration Pack - Learner Activity 2: Data Types
Topic Exploration Pack - Learner Activity 3: Data Types

Online Delivery Guide: Boolean Algebra

Topic Exploration Pack - Teacher Instructions: Boolean Algebra

Topic Exploration Pack - Learner Activity 1: Boolean Algebra
Topic Exploration Pack - Learner Activity 2: Boolean Algebra
Topic Exploration Pack - Learner Activity 3: Boolean Algebra
No current supporting resources for this unit

No current supporting resources for this unit

Teaching weeks: 30
Teaching hours/week: 5
Total teaching time: 150
Scheme teaching time: 90

Teaching Hours Topic

5 Thinking Concurrently

5 Thinking Procedurally

5 Thinking Logically

5 Thinking Abstractly

5 Thinking Ahead

Scheme of work teaching hours

Please read guidance notes on right when planning
your scheme of work

15 Algorithms

10 Software Development

10 Computational Methods

30 Programming Techniques

Guidance to teachers

Sub Topic
The nature of abstraction.
The need for abstraction.
The differences between an abstraction and reality.
Devise an abstract model for a variety of situations.
Identify the inputs and outputs for a given situation.
Determine the preconditions for devising a solution to a problem.
The nature, benefits and drawbacks of caching.
The need for reusable program components.
Identify the components of a problem.
Identify the components of a solution to a problem.
Determine the order of the steps needed to solve a problem.
Identify sub-procedures necessary to solve a problem.
Identify the points in a solution where a decision has to be taken.
Determine the logical conditions that affect the outcome of a decision.
Determine how decisions affect flow through a program.
Determine the parts of a problem that can be tackled at the same time.
Outline the benefits and trade offs that might result from concurrent processing in
a particular situation.

Programming constructs: sequence, iteration, branching.

A
Le

ve
l C

on
te

nt

Allocated teaching time is assuming that you are teaching the full A Level, and
thus need to include the Component 03 Programming Project.

If solely teaching AS Level then you can adjust teaching time accordingly, as you
will not need to factor in the time for the Programming Project, but will need to
deliver the Component 02 content.

AS Level is viewed as a one year course and fits well with A Level if co-teaching.
Stretching AS over two years may make co-teaching significantly more difficult to
coordinate.

Centres may wish to deliver AS in Year 12 and A Level in Year 13. Candidates
likely to move on to Year 13 should be studying programming throughout the first
year to consolidate their skills. Solely delivering practical programming skills in
Year 13 may hinder their progress within the Component 03 Programming Project
unit.

C
om

m
on

 C
on

te
nt

AS
 o

nl
y

C
on

te
nt

Recursion, how it can be used and compares to an
iterative approach.
Global and local variables.
Modularity, functions and procedures, parameter
passing by value and by reference.
Use of an IDE to develop/debug a program.
Use of object oriented techniques.
Understand the waterfall lifecycle, agile methodologies, extreme programming, the
spiral model and rapid application development.
The relative merits and drawbacks of different methodologies and when they
might be used.
Writing and following algorithms.
Different test strategies, including black and white box testing and alpha and beta
testing
Test programs that solve problems using suitable test data and end user
feedback, justify a test strategy for a given situation.
Features that make a problem solvable by computational methods.
Problem recognition.
Problem decomposition.
Use of divide and conquer.
Use of abstraction.
Learners should apply their knowledge of:
• backtracking
• data mining
• heuristics
• performance modelling
• pipelining
• visualisation to solve problems.
Analysis and design of algorithms for a given situation.
The suitability of different algorithms for a given task and data set, in terms of
execution time and space.

Standard algorithms (bubble sort, insertion sort, binary search and linear search).
Standard algorithms (quick sort, Dijkstra’s shortest path algorithm, A* algorithm,
binary search).
Implement bubble sort, insertion sort.
Implement binary and linear search.
Representing, adding data to and removing data
from queues and stacks.

Measures and methods to determine the efficiency of different algorithms, Big O
notation (constant, linear, polynomial, exponential and logarithmic complexity).
Algorithms for the main data structures, (stacks, queues, trees, linked lists, depth-
first (post-order) and breadth-first traversal of trees).
Comparison of the complexity of algorithms.
Compare the suitability of different algorithms for a given task and data set.

Resource Links
Online Delivery Guide: Thinking Abstractly

Online Delivery Guide: Thinking Ahead
Topic Exploration Pack - Teacher Instructions: Thinking Ahead
Topic Exploration Pack - Learner Activity: Thinking Ahead

No current supporting resources for this unit

Topic Exploration Pack - Teacher Instructions: Thinking Logically
Topic Exploration Pack - Learner Activity: Thinking Logically
Online Delivery Guide: Thinking Concurrently

Topic Exploration Pack - Teacher Instructions: Thinking Concurrently

Topic Exploration Pack - Learner Activity: Thinking Concurrently

Topic Exploration Pack - Learner Activity: Thinking Concurrently
Online Delivery Guide: Programming Techniques

0%

100%

100%

C
o-

te
ac

ha
bl

e
pe

rc
en

ta
ge

100%

75%

Topic Exploration Pack - Teacher Instructions: Programming Techniques

Topic Exploration Pack - Learner Activity: Programming Techniques

Online Delivery Guide: Software Development

Topic Exploration Pack - Teacher Instructions: Software Development

Topic Exploration Pack - Learner Activity: Software Development

Online Delivery Guide: Computational Methods
Topic Exploration Pack - Teacher Instructions: Computational Methods

Topic Exploration Pack - Teacher Instructions: Algorithms

Topic Exploration Pack - Learner Activity: Algorithms

Topic Exploration Pack - Learner Activity: Activity 2 Program Code

Topic Exploration Pack - Learner Activity: Activity 4 Program Code

37%

0%

0%

66%

Teaching Hours Topic

Decompose the Problem

Analysis of the Problem (10 Marks)

Design of the solution (15 Marks)

11

Describe the solution

Research the Problem

Specify the Proposed
Solution

Scheme of work teaching hours

Please read guidance notes on right when planning
your scheme of work

Suggested teaching time 70-80

Problem Identification

Stakeholders

Success of the solution

Describe the final product

Testing to inform evaluation

Developing the solution (25 Marks)

Evaluation (20 Marks)

17

Testing to inform
development

15

Maintenance and
development

35

Describe the approach to
testing

Iterative Development
Process

Describe the solution

Guidance to teachers

Sub Topic

Describe and justify the features that make the problem solvable by computational
methods.
Explain why the problem is amenable to a computational approach.

Research the problem and solutions to similar problems to identify and justify
suitable approaches to a solution.
Describe the essential features of a computational solution explaining these
choices.
Explain the limitations of the proposed solution.
Identify the points in a solution where a decision has to be taken.
Determine the logical conditions that affect the outcome of a decision
Determine how decisions affect flow through a program.

Break down the problem into smaller parts suitable for computational solutions
justifying any decisions made.
Explain and justify the structure of the solution
Describe the parts of the solution using algorithms justifying how these algorithms
form a complete solution to the problem.

Identify and describe those who will have an interest in the solution explaining how
the solution is appropriate to their needs (this may be named individuals, groups
or persona that describes the target end user).

Component 03 (Programming Project) is a personal programming project, driven
by the student. There is no limit as to how much time you may spend on it -
however, candidates will need to have developed understanding of procedural
and object-oriented programming, as well as sorting and searching algorithms
and the advanced data structures.

The programming project is worth 20% of the final mark.

The project is expected to be around 20-25% of the total teaching time - although
realistically it may take slightly more. Most schools tend to commence idea
generation and project idea submission towards the end of Year 12 (1st Year of A
Level) in preparation for the following September.

Whilst there are not limits on how long to spend on each section, the teaching
hours are based on the percentage of marks allocated to that section. Teachers
should use their discretion and judgement when deciding teaching hours.

Describe usability features to be included in the solution.
Identify key variables / data structures / classes justifying choices and any
necessary validation.
Understand the waterfall lifecycle, agile methodologies, extreme programming, the
spiral model and rapid application development.
The relative merits and drawbacks of different methodologies and when they
might be used.
Writing and following algorithms.
Different test strategies, including black and white box testing and alpha and beta
testing.
Test programs that solve problems using suitable test data and end user
feedback, justify a test strategy for a given situation.

Provide annotated evidence of each stage of the iterative development process
justifying any decision made.
Provide annotated evidence of prototype solutions justifying any decision made.

Provide annotated evidence for testing at each stage justifying the reason for the
test.
Provide annotated evidence of any remedial actions taken justifying the decision
made.

Provide annotated evidence of testing the solution of robustness at the end of the
development process.
Provide annotated evidence of usability testing (user feedback).
Use the test evidence from the development and post development process to
evaluate the solution against the success criteria from the analysis.
Provide annotated evidence of the usability features from the design, commenting
on their effectiveness.
Discuss the maintainability of the solution.
Discuss potential further development of the solution.

Resource Links

CPD Courses for delivery of Programming Project

Centre Authentication and Candidate Record Forms

Centre Authentication Form

Interactive Unit Record Sheet

Other Supporting resources

Types of Programming Languages

Data Types Delivery Guide

Data Structures Delivery Guide

Programming Techniques

Thinking Abstractly

Thinking Ahead

Thinking Concurrently

Teacher Guides

Project teacher guide

Programming Language Guide

Project Complexity Guide

Pseudocode Guide

	Theory Content Overview
	Component 01
	Component 02
	Component 03

